Space Research

The Hunt for Supersymmetry

Supersymmetry (SUSY) is one of the most promising and most studied extensions to the so-called Standard Model (SM) of particle physics. It elegantly solves several theoretical problems of the model: How is the mass of the Higgs particle kept finite? Can the forces of Nature be unified a manifestations of one governing principle? SUSY also provides a candidate for the so-called “Dark Matter” that seems to be prevalent in the Universe. Next year, when the physics programme of the Large Hadron Collider starts up we will have the best possibility so far to detect if SUSY is part of Nature.

read more

Finding the Secret Code of Nature

At the Large Hadron Collider (LHC) in the high energy particle physics facility CERN near Geneva, in Switzerland, thousands of physicists from all over the world have built the next instrument that is going to help them decode the secrets of Nature: the ATLAS detector

read more

Technology Transfer from CERN

In the quest to find out what matter is made of and how its different components interact, high-energy physics needs very sophisticated instruments using technologies and requiring performance that often exceed what is available to industry. New technologies are developed to solve specific needs at CERN, but these technologies are often applicable outside the physics laboratories. The most well known technology coming from CERN is the World Wide Web (WWW), originally developed to solve the information sharing need between physicists and laboratories. This technology was made freely available to everyone and is today part of the everyday modern communication.

read more

LHC – Heaven and Earth Colliding

No matter if we look out in space or inside matter the world’s constituents remain the same. With the imminent start of the Large Hadron Collider (LHC), the world’s most powerful particle accelerator, we enter into a new area of particle physics. Any new discoveries could also be beneficial to the areas of astrophysics and cosmology, shedding light on our common understanding of the universe.

read more

The Alfvèn waves – now detected in the solar corona

The surface of the Sun has a temperature at about 10,000 degree Fahrenheit, but the temperature in the corona is rising to millions of degrees. Although scientists have some ideas of what the temperature in the solar corona might be, there is no universal explanation yet.

read more

Ørsted Satellite – The Danish Miracle in Space

Insight in the vortex-like flows in the Earth’s core of fluid metal, information on the electrical properties of the viscous mineral mass in the Earth’s mantle, estimates of the crustal thickness and its remnant magnetism, calculation of the heat flow from Earth’s interior to the bottom of ice caps, measurements of large-scale ocean currents, sounding of the temperature and humidity profiles in the atmosphere, mapping of the electron content in the upper atmosphere, scaling of the electric currents in outer space, detection of the high-energy particles in the radiation belts, estimates of the electric fields in the solar wind.

read more